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Extension of Otolorin's Scheme to a System 
Of Nonlinear Equations with Singular Jacobian                     Sandeep Singh     

Abstract:- In this paper, we extend the idea of Otolorin's [1] for solving a single variable nonlinear equation to a system of non linear equations, 
Permitting Singular Jacobian at some points in the vicinity of the required root. It is proved that this modification has quadratic convergence. Using this 
modification, we further presented new cubically convergent Predictor-corrector type method free from second order derivative. The proposed algorithms 
are simple and straight forward to implement, Several numerical examples are given to illustrate their efficiency and the performance of the presented 
methods Therefore, these methods may be viewed as an extension and generalization of the existing methods.     
Keywords:- Nonlinear equations, Iterative’s methods, Taylor series expansion, Singular  Jacobian, Predictor-corrector method Order of Convergence. 
1.Introduction 
Due to the fact that system of nonlinear equations arises 
frequently in science and engineering they have attracted 
researcher's interest. For example, nonlinear system of 
equations, after the necessary processing step of implicit 
discretization,  is solved by finding the solutions of system 
of equations. We consider here the problem of finding a 
real zero, say x*= (x*1, x*2…….; x*n)T,  of a system of non 
linear equations 
                                             f1(x1, x2, ...…….., xn) = 0; 
                                             f2(x1, x2,  ...…….., xn) = 0; 
                                             ::::::::::::::::::::::::::::::::::::::; 
                                             ::::::::::::::::::::::::::::::::::::::; 
                                             fn(x1, x2, ……….., xn) = 0; 
This system can referred in vector form by 
                    F(X) = 0      (1.1)                                                                         
where  F = (f1, f2, ………, fn)T and                                   X = (x1, 
x2,.……..,xn)T 
Let the mapping F : D  Rn →Rn assumed to satisfy the 
following assumptions (1.1) F(X) is continuously 
differentiable in an open neighborhood D of X*. There 
exists a solution vector X*of (1.1) in D such that F(X*) = 0 
and F(X*) ≠0 then the standard method for finding the 
solution to equations (1.1) is the classical Newton method  
[2-5] given by                                              
                    X(k+1) = X k - F(X k)/F’(X k);      k = 0, 1,………(1.2) 

 
Though, Newton formula (1.2) is simple and fast with 
quadratic convergence but it may fail miserably if at any 
stage of computation, the Jacobian matrix of F(X) at any 
iterative point is singular or almost singular i.e.  |F’(X)| = 0 
Therefore, it has poor convergence and stability problems 
as it is very sensitive to initial guess. Classical methods by 
the simple modification of iteration processes. 
2. Definition Of Some Means 
For given real numbers a and b, some well-known means 
(only free from square root ) is defined as numbers : 
              A(Arithmetic Mean) = (a + b)/2                                      
C(Centre - Harmonic Mean) = (a2 + b2)/(a + b                                                     
H(Centroidal Mean) = 2(a2 + ab + b2)/3(a + b) 
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3. Development of the Method 
First we shall outline the derivation of the method in n-
dimensions. If we multiply by ep(x1- x10) , ep(x2- x20), ……….. ep(xn- 

xn0)  ; each of above expression the result will not be change. 
Consider the following system of n-nonlinear equations in 
n-unknowns x1, x2, …….., xn: 
ep(x1- x10)  f1(x1, x2, ...…….., xn) = 0; 
ep(x2- x20) f2(x1, x2,  ...…….., xn) = 0; 
::::::::::::::::::::::::::::::::::::::::::::::::::::; 
::::::::::::::::::::::::::::::::::::::::::::::::::::; 
ep(xn- x20)fn(x1, x2, ……….., xn) = 0; 
Taking an estimate(x10, x20,……, xn0) of a solution (1.1), we try 
to compute step size(h1, h2, …….., hn) such that 
X = (x10 + h1, x20 + h2, ….., ; xn0 + hn)T        (3.1) 
Let us denote the approximation as                          X = (x1, x2, 
……., xn)T and the step size as                 
H =(h1, h2,……., hn)T 
Using Taylor's therom for n-variables in equation (1.1), we 
get F(X) = F(X0 + H) = F(X0) + HF’ (X0) + (1/2!)H2F"(X0) + 
……………………… (3.2) 
X = X0 + H where X0 = (x10 , x20,  ……., xn0)T 
0 = f1(X)  
= f1(X0 + H) 
≈[f1(X0) + h1∂f1/∂x1+ h2∂f1/∂x2 + ……….. + hn∂f1/∂xn +O(h2)]eph1 
= [f1(X0) + h1∂f1/∂x1+ h2∂f1/∂x2 + ………. + hn∂f1/∂xn  

+ O(h2)](1 + ph1 + O(h2) 
= f1(X0) + h1∂f1/∂x1+ h2∂f1/∂x2 + …….. + hn∂f1/∂xn 
+ ph1f1(X0) + O(h2) 
Similarly 
f2(X0) + h1∂f2/∂x1+ h2∂f2/∂x2 +…….. + hn∂f2/∂xn 
+ ph2f2(X0) + O(h2) = 0 
f3(X0) + h1∂f3/∂x1 + h2∂f3/∂x2 + ……. + hn∂f3/∂xn 
+ ph3f3(X0) + O(h2) = 0 
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
fn(X0) + h1∂fn/∂x1 + h2∂fn/∂x2 + ……. + hn∂fn/∂xn 
+ phn fn(X0) + O(h2) = 0 
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Converting the system in matrix form, we have 
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As X = X0 + H, we have 
X = X0 -[JF(X0) + diag (pfi(X0))]-1F(X0)      (3.3) 
Where p is any real non-zero parameter. 
If p = 0 then given method is Newton's method. Therefore p 
is a non-zero real number chosen so that the denominator 
has maximum value. 

P= 

⎩
⎪
⎨

⎪
⎧ −푚 푖푓	 퐽 ( ) < 0	푎푛푑	|푑푖푎푔(푝푓 (푋0)| > 0
−푚 푖푓	 퐽 ( ) > 0	푎푛푑	|푑푖푎푔(푝푓 (푋0)| < 0
푚 푖푓	 퐽 ( ) < 0	푎푛푑	|푑푖푎푔(푝푓 (푋0)| < 0
푚 푖푓	 퐽 ( ) > 0	푎푛푑	|푑푖푎푔(푝푓 (푋0)| > 0

 

4. Families of predictor -corrector type methods 
Using formula (3.3), we shall propose various families of 
modified predictor type methods. The following lemma 
will be used to describe the modified variants of Newton 
method; its proof can be found in [3]. 
Lemma4.1. Let F: D ⊆ Rn be continuously differentiable on 
an open interval D then for 
Any X, Y 흐 D F(X) satisfies	 
F(Y) - F(X) =∫ 퐹 푥 + 푡(푌 − 푋) (푌 − 푋)푑푡      (4.1) 
 
Once an iterate(x0)is obtained ,using (4.1) we have 
F(Y) =F(X) + ∫ 퐹 푥 + 푡(푌 − 푋) (푌 − 푋)푑푡     (4.2) 
If an estimate of integral (4.2) is made by means of the 
midpoint rule and Y = X@ is taken then 
0 ≈F0(X0) + F0 ((X0 + X@)/2) (X@ - X0)                       (4.3) 
Is obtain and a new approximation X of X@ is given by 
X = X0 - [F0((X0 + X@)/2)]-1F(X0) (4.4) 
In order to avoid implicit problem we use (k+1)th iteration 
of modification Newton method (1.2) in the right hand side 

of equation(4.4).Therefore the general formula for 
modification midpoint Newton method will be given by  
X = X0-[F0((X0+Z/2)]-1F(X0);                              (4.5) 
Where Z = X0-[Jf(X0) +dig(pfi(X0))]-1F(X0)   
(4.4) can be written as     
X = X0 - [JF ((X0 + Z)/2)]-1F(X0)                                (4.6) 
If an estimation of integral (4.2) is made by the trapezoidal 
rule, then we obtain the following modified Newton 
formula: 
X = X0 -				 ( )

( ) ( )
                                     (4.7) 

  
Where Z = X0 - [JF(X0) + dig (pfi(X0))]-1F(X0) 
Note that for p = 0, formula is the arithmetic mean Newton 
formula given by 
X = X0 -				 ( )

( ) ( )
                                      (4.8)  

Where Z = X0 -		 ( )
( )

                        
   Formula (4.7) used the arithmetic mean of F0(X0) and F0(Z) 
instead of F0(X0).Therefore, this formula may be called 
modified arithmetic mean Newton formula Similarly by 
using different approximations to the indefinite integral 
(4.3), different iterative formula can be obtained for solving 
system of nonlinear equations.  
Some other formulae based on means   
Some other new third-order methods based on contra-
harmonic mean and centroidal mean can also be obtained 
from formula (4.7) as follows: 

(i) Modified contra-∂harmonic mean family of 
Newton's method 

              X = X0 -	 ( ) ( )
′( ) ′( )

F(X0)            (4.9) 
Where Z = X0 - [JF(X0) + dig(pfi(X0))]-1F(X0) 
(ii) Modified centroidal mean family Newton's 

method 
         X = X0 -	 [ ( ) ( )]

[ ′( ) ′( ) ′( ) ′( )]
F(X0)    (4.10) 

Where Z = X0 - [JF(X0) + dig(pfi(X0))]-1F(X0) 
These modified variants of Newton method will work even 
if |F0(X)| is small or zero in the vicinity of the required 
root. Note that for p = 0, formula 
(4.9) and (4.10) reduce to contra-harmonic and centroid 
mean Newton formulas. 
5. Convergence analysis 
We shall present the mathematical proof for the order of 
convergence of formula (3.3) and (4.7) and the order of 
convergence for the remaining algorithms can be proved in 
same lines. 
Theorem5.1. Let r ЄD be a simple zero of a sufficiently 
differentiable function F : D ⊆ Rn → Rn for interval D. Let X0 
be an initial guess sufficiently closed to r and [JF(X0) + 
diag(pfi(X0))] ≠0 in D. Then the sequence generated by 
formula (3.3) is quadratical convergent. 
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Proof. : Let r be a simple zero of F(X) = 0 (i.e. F(r) = 0) and F :  
Rn → Rn be defined 
by ø(X) = X -[JF(X) + diag(pfi(X))]-1F(X) 
This can be written as 
[JF(X) + diag(pfi(X))] (ø(X) - X) + F(X) = 0    (5.1) 
Taking ∑ 
 
We have 
∑ [J ( ) 	+ 	diag(pf (X))]	(ø (X) 	− 	X) 	+ 	 f (X) = 0         (5.2) 
Putting X = r in (5.2) we have 
                   øj(r) = rj                                  (5.3) 
Differentiate (5.2) w.r.t. xq we have 
          ∑ ( ) 	 ( )

ø (X)−	x +∑ J ( ) +

	diag pf (X) 	 ø ( ) − 훿 	+ ∂fi(X)/∂ xq = 0    (5.4)                                                     

Using (5.3) in (5.4) and putting X = r we have 
                  ∂øj(r)/∂xq=0                                (5.5) 
Differentiate (5.4) w.r.t. xr we have 

           ∑ ( ) 	 ( )

	
 ø (X)−	x 												 

        +	∑ ∂ J ( ) + 	diag pf (X) / ∂x 	
ø ( ) -	훿  

         +∑ ∂ J ( ) + 	diag pf (X) / ∂x ø ( ) − 훿  

          +∑ J ( ) + 	diag pf (X) 	 ø ( ) 

           + ∂2fi(X)/∂xr∂ xq   =0                               (5.6) 
Putting X = r in (5.6) and using (5.5) and (5.3) we have 
                                ∂2ø (r)/∂xr∂ xq ≠0            (5.7) 
therefore the equation (3.3) and (4.7) is quadraticaly 
convergent. 
Theorem5.2. Under the hypothesis of theorem (5.1) system 
(4.9) and (4.10) convergent to r with convergence order 
three. 
Proof: Let us consider r 흐 Rn of F(X) = 0 as a simple zero .Let 
ø: Rn → Rn defined as 
ø(X) = X - inv[JF ((X + Z)/2)]F(X) 
or 
JF ((X + Z)/2)(ø(X) - X) + F(X) = 0                            (5.8) 
Taking ∑ 
∑ J 	(( 	 	 )/ ) (øj(X) - xj) + fi(X) = 0                 (5.9) 
Put X = r in (5.9) we have 
                                    øj(r) = rj                          (5.10) 
Differentiate (5.9) w.r.t. xq we have 
											∑ ∂J 	(( 	 	 )/ )		 /휕푥  (øj(X) - xj)   
          +  ∑ J 	(( 	 	 )/ ) ∂øj(X)/∂xq - δjq) +∂fi(X)/∂xq = 0  
                                                                              (5.11)                                                          

Put X = r in (5.11) and using (5.10) we have 
                         ∂øj(r)/∂xq   =0                          (5.12) 

Differentiate (5.11) w.r.t. xr we have 
              ∑ ∂ J 	(( 	 	 )/ )		 /휕푥 휕푥  (øj(X) - xj)  
           + ∑ ∂J 	(( 	 	 )/ )		 /휕푥  (∂øj(X)/∂xr - δjr) 
          +  ∑ ∂J 	(( 	 	 )/ ) /휕푥  ∂øj(X)/∂xq - δjq)  

           + ∑ J 	(( 	 	 )/ ) ∂2øj(X)/∂xr ∂xq       
            +∂2fi(X)/∂xr ∂xq = 0                                    (5.13) 
Put X = r in (5.13) and using (5.10) and (5.12) we have 
                   ∂2øj(X)/∂xr ∂xq  = 0                             (5.14) 

Differentiate (5.13) w.r.t. xl we have 
																∑ ∂ J 	(( 	 	 )/ )		 /휕푥 휕푥 휕푥  (øj(X) - xj)  
           + ∑ ∂ J 	(( 	 	 )/ )		 /휕푥 휕푥  ∂øj(X)/∂xl - δjl 
           + ∑ ∂ J 	(( 	 	 )/ )		 /휕푥 휕푥  (∂øj(X)/∂xr - δjr) 
          +		∑ ∂J 	(( 	 	 )/ )		 /휕푥   ∂2øj(X)/∂xl ∂xr   
          +  ∑ ∂ J 	(( 	 	 )/ ) /휕푥 휕푥  ∂øj(X)/∂xq - δjq)  
          +  ∑ ∂J 	(( 	 	 )/ ) /휕푥  ∂2øj(X)/∂xl ∂xq   
          + 	∑ ∂J 	(( 	 	 )/ )/ ∂x   ∂2øj(X)/∂xr ∂xq       
          +  ∑ J 	(( 	 	 )/ ) ∂3øj(X)/∂xl∂xr ∂xq     
            +∂2fi(X)/∂xr ∂xq = 0                                    (5.15) 
Put X = r in (5.15) and using (5.10), (5.12) and (5.14) we have 
                          ∂3øj(X)/∂xl∂xr ∂xq  ≠ 0                 (5.16) 
6. Numerical results 
In this section, we shall check the performance of the 
Present families say S1(3.3), SS1(4.7), SB1(4.9), SSB1(4.10) 
and S2(3.3),  SS2(4.7), SB2(4.9), SB2(4.10) by taking m = 0.5 
and m = 0.05.The comparisons is carried out With Newton 
method and with GTM1 and GTM2[8].A mat lab program 
has been written to implement these methods . We use the 
following stopping criteria for computer programs. We use 
흐 = e-10 
(i) |F(Xn)| < 흐 
For every method, we analyze the number of iterations 
needed to converge to the required solution. The numerical 
results are reported in the table 1 
We consider the following problems for a system of 
nonlinear equations. 
Problem (a) 
                            x12 – 2 x1 – x2  + 0.5 = 0 
                                    x12 +  4 x22  - 4 = 0                       
Problem (b) 
                                         x12 + x22  -1 = 0 
                                    x12 -  x22  + 0.5 = 0                       
 
Problem (c 
                                    x12 – x22  +3log(x1) = 0 
                                  2x12 – x1 x2 - 5x1 + 1 = 0                       
Problem (d)  
                                   ex1 + x1 x2 – x2   - 0.5 = 0 
                                sin(x1 x2) + x1 + x2  - 1 = 0                       
Problem (e) 
                                                 x1 + 2 x2 – 3 = 0 
                                               2x12 +  x22  - 5 = 0                       
 
 
Problem (f) 
                                                    x12 –x22 – 4 = 0 
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                                                x12 +   x22  - 16= 0                                                                 
Problem (g) 
                                                    x12 –x22 – 1 = 0 
                                                       x13 x22  - 1= 0 
    Solution (a)  
    r = (1.9006767263670658, 0.31121856541929427)T 

Solution (b)  
    r = (0.500000000000000000, 0.8660254378443865)T 
     r = (-0.5000000000000000, -0.8660254378443865)T 
Solution (c)  
        r = (1.3192058033298924,-1.6035565551874148)T 
Solution (d) r = (0, 1)T 
Solution (e) 
      r = (1.4880338717125849, 0.75598306414370757)T 
Solution (f)  
     r = (3.1622776601683820, 2.44948974278312840)T 
Solution (g)  
     r = (1.2365057033915010, 0.7272869822289620)T 
 
7. Conclusions 
The presented families are simple to understand, easy to 
program and have the same rate of convergence as Newton 
method and GTM1, GTM2 have. The behavior of existing 
iterative scheme and proposed modification can be 
compared by their corresponding correction factors. The 
correction factor F(Xk)/F’(Xk), which appears in the Newton 
method and its variants, is now modified by 
							 ( )

(	 	)
;         p ≠ 0 

This factor is always well defined, even if Jocabian 
determinate of |F(Xk)| = 0 at some points in the vicinity of 

required root. Moreover, they have the same efficiency 
indices as that of existing method. Therefore, these 
techniques have a definite practical utility. However, if |F’ 
(Xk)| = 0 and any of fi(Xk) is zero at initial guess, then the 
method will be work. 
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Table 1:  Numerical results of problems (a) to (g) using different methods. 
F(X) X NM GMT1 GMT2 S1 SS1 SB1 SSB1 S2 SS2 SB2 SSB2 
(a) (3,2)T 9 5 6 4 2 4 3 5 3 4 3 
(a) (1.6,0)T 8 6 5 3 2 3 3 4 2 3 3 
(b) (.7,-2)T 7 5 5 3 2 2 2 2 3 2 2 
(b) (-1,-2)T 8 6 6 5 3 3 3 4 2 3 3 
(c)  (.91,-2)T 8 6 5 4 2 4 2 4 2 4 2 
(c) (1.5,-1.5)T 7 5 5 3 2 3 2 3 2 3 2 
(d) (.9, .9)T  8 5 5 4 2 4 3 4 2 4 3 
(d) (-0.1, 0.2)T  7 5 5 3 2 3 2 3 2 3 2 
(e) (.9, .5)T  8 6 5 4 2 3 2 4 2 3 2 
(e) (1.5, 1)T  7 5 4 3 1 2 2 3 1 2 2 
(f) (0, 0)T  Fails Fails Fails 4 3 4 4 Div 7 9 10 
(f) (3, 2)T  3 Fails 2 3 1 2 2 3 2 2 2 
(g) (0, 0)T  Fails Fails Fails 15 13 Div Div 26 Div Div Div 
(g) (1, 2)T  12 12 12 12 11 12 12 12 11 12 12 
 


